Files
Excel-project/server/backend/handlers/ozon_handler.py
2025-11-06 17:50:27 +03:00

28 lines
2.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from pydantic import ValidationError
from server.backend.pydantic import ExcelInfo
import re
def process_sheet(df, real_arti = '', real_quantity='', real_sum_1='', real_sum_2=''):
pattern = r'[A-ZА-Я]{0,1}\d{4}[A-ZА-Я]{1,2}\d{1}' #regex
df = df[[real_arti, real_quantity, real_sum_1, real_sum_2]].copy().dropna() #copy and drop all NA values
df = df[(df != 0).all(axis=1)] #drop all 0 values
df[real_sum_1]+=df[real_sum_2]
df_validate = df[[real_arti, real_quantity, real_sum_1]].copy()
df_validate.rename(columns={real_arti: 'arti', real_quantity: 'counts', real_sum_1: 'price'}, inplace=True) #переименовываем для pydantic
df_validate['arti'] = df_validate['arti'].astype(str).str.extract(f'({pattern})', flags=re.IGNORECASE) #arti под regex
df_validate['price'] = df_validate['price'].astype(float) #Float to Int, if exists
df_validate['counts'] = df_validate['counts'].astype(int) #Float to Int, if exists
validated_rows, errors = [], []
for i, row in df_validate.iterrows(): #проходит построчно по df, где i - индекс строки, row - данные строки
try:
validated_rows.append(ExcelInfo(**row.to_dict())) #добавляем в список проверенные данные полученные от pydantic, которые туда передаются в виде dict
except ValidationError as e:
errors.append((i, e.errors())) #выводит ошибку и пишет номер строки
if errors:
raise Exception(f"There are some errors with validation in Sheet1, check it ", errors)
return validated_rows
def evaluating(dfs):
validated_rows_1 = process_sheet(dfs["Отчет о реализации"], real_arti='2',real_quantity='8', real_sum_1='5',real_sum_2='6') # номера столбцов от озона
validated_rows_2 = process_sheet(dfs["Отчет о реализации"], real_arti='2',real_quantity='16', real_sum_1='13',real_sum_2='14')#
return validated_rows_1, validated_rows_2